Data SheetSRP-HT Indicator

+34 930 331 000 aura@auraiss.com Via Augusta, 82, Planta 3 08006, Barcelona, España www.auraiss.com

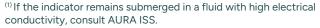
DESCRIPTION

The SRP-HT is a rupture indicator based on the SRP indicator, modified to withstand high temperatures.

When the rupture disc opens, the sudden pressure difference breaks the graphite conductor, opening the circuit and immediately cutting off the electrical signal.

The mica gaskets and graphite conductor allow for a much higher process temperature than usual, up to 500°C in air, with the possibility of exceeding this in less oxidizing atmospheres.

The wiring is made of silicone or fiberglass to withstand high ambient temperatures.


FEATURES

- · Single-use device.
- · Normally closed (NC) signal type.
- Installation downstream of the rupture disc or safety valve, on top of the holder, or independently between flanges.
- · Compatible with metallic or graphite rupture discs.
- · Graphite conductor.
- Suitable for gases and liquids. (1)
- · Fragmentable.
- Suitable for vacuum protection. (2)
- Sizes from 25 mm to 250 mm (1" 10").
- Silicone or fiberglass wiring. (3)
- Steel-reinforced mica gasket material.
- · Suitable for EN 1092-1 and ANSI B16.5 flanges.
- The indicator is suitable for use in ATEX zones, provided it is used with a certified intrinsic safety barrier.

MATERIALS -

Conductor - Graphite (Carbon content ≥99.85%)
Gaskets - Steel-reinforced mica

NOTE: Only the materials that are in contact with the process are specified.

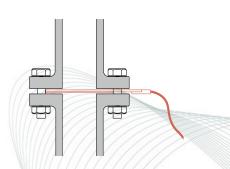
⁽²⁾ For vacuum protection applications, consult with AURA ISS.

Operating Limits		
Maximum Voltage	24 VDC	
Maximum Current	100 mA	
Temperature range (air)		
Service temperature	100 °C to 500 °C (212 °F to 932 °F)	
Maximum temperature	600 °C (1112 °F)*	

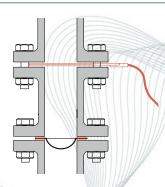
*For sustained temperatures exceeding 500°C, contact AURA ISS.

Permissible wiring temperature		
Silicone	-60 °C to 180 °C (-76 °F to 356 °F)	
Fiberglass	-50 °C to 350°C (-58 °F to 662 °F)	

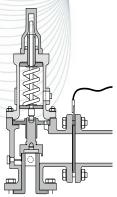
Specifications			
Size	Minimum burst pressure barg (psi)	Total height mm (in)	
25 - 65 mm (1"- 2-1/2")	0.06 (0.87)		
80 - 100 mm (3" - 4")	0.05 (0.73)	4.2 (0.16)	
150 mm - 250 mm (6" - 10")	0.04 (0.58)		


Test conditions : 22°C (72°F) Fluid test : Air

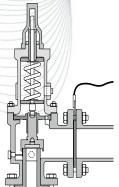
⁽³⁾ Standard Length: 1m



+34 930 331 000 aura@auraiss.com Via Augusta, 82, Planta 3 08006, Barcelona, España www.auraiss.com


INSTALLATION

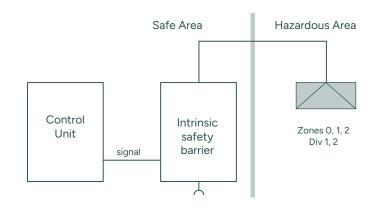
Option 1 - Directly between flanges



Option 2 - Directly between flanges on the disc (without a holder)

Option 4 - At the outlet of the safety valve

Option 3 - On top of the holder


ATEX ZONE INSTALLATION

The SRP-HT rupture disk indicator is classified as a simple device and, therefore, can operate in ATEXclassified potentially explosive atmospheres.

Even so, to install it in a classified zone, it must be powered electrically by a certified intrinsic safety barrier, which limits the energy below the hazardous threshold established by the ATEX directive.

At AURA ISS, we have a certified barrier for working with combustible gases/dusts, in zones 0, 1, 2, 20, 21, and 22.

For more information, please contact AURA ISS.

